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Abstract. We present a molecular-dynamics calculation of the structure of molten tellurium, 
based on effective interatomic forces derived from pseudopotential theory. Interatomic 
distances, coordination numbers, and bond angles are predicted in good agreement with 
recent neutron diffraction data. The analysis of the local topology shows that in liquid 
tellurium the atoms form a network ofentangled broken chains with an average coordination 
number of N ,  = 2.5 just above the melting point. We show that the physical mechanism 
stabilising this structure is the modulation of the random packing of the atoms in the melt 
by Friedel oscillations in the effective interatomic potential. We argue that this is just a 
generalised real-space description of the Peierls distortion argument conventionally used to 
explain the structure of crystalline Se and Te.  The role of truly covalent interactions not 
included in this simple picture is discussed. 

The purpose of this paper is to discuss the possibility of calculating the structure of liquid 
tellurium, starting from a very simple electronic theory of the interatomic forces. 

It has long been recognised that liquid tellurium occupies a unique position halfway 
between semimetals and semiconductors: as pointed out by Enderby and co-workers 
[ l ,  21 the electrical resistivity, the Hall coefficient, the thermopower, and the Knight 
shift are beyond what can be explained straightforwardly using nearly-free-electron 
theory, but they are just beyond. With increasing temperature, liquid Te becomes 
distinctly more metallic. Cabane and Friedel [3] have shown that the number of free 
electrons per atom estimated from the Hall-effect and Knight-shift data increases from 
about one, just above the melting point (TM = 722.5 K), to nearly three at T = 1200 K. 
Recent neutron scattering experiments [4,5] have demonstrated that this change in the 
electronic properties is accompanied by an increase in the average coordination number 
from N ,  = 2.5 at melting to N ,  = 3 at T = 1100 K. 

The structure of liquid Te is usually discussed with reference to its crystal structure. 
Crystalline Se and Te form a trigonal lattice, with helical chains of atoms running along 
the axes of the hexagonal cell. This structure may be considered as resulting from a 
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Figure 1. The structure of trigonal Se and Te.  ( a )  Three close-packed layers stacked in an 
ABC sequence. ( b )  The trigonal structure projected onto the basis plane of the hexagonal 
cell. After [ 6 ] .  

distortion of close-packed layers stacked in an ABC sequence [6] (figure 1). Alterna- 
tively, the lattice may be derived from a simple cubic structure via a ‘bond breaking’ 
distortion. In the present context we shall find it more useful to relate the complex 
structure of either crystalline or liquid Te to a close-packed arrangement of atoms. While 
there is a general agreement that the structure of the liquid is similar to that of the crystal, 
the models proposed in the literature do differ as regards their details. Cabane and 
Friedel [3] have suggested that liquid Te consists of a random network of atoms that are 
either twofold or threefold coordinated. The fraction of tricoordinated sites increases 
with increasing temperature, and this should explain the more metallic behaviour. 
Pushing this idea further, Tsuchiya and Seymour [7] and Cutler and Rasolondramanitra 
[8] have developed an inhomogeneous structure model for liquid Te: it consists of 
two different domains; one has threefold coordination and is metallic, the other has 
twofold coordination and is semiconducting. On the other hand, Bellisent and Tourand 
[9,10] have proposed a homogeneous model consisting of nearly freely rotating chains: 
while bond-distances and bond-angles are very similar to their values in the crystalline 
phase, the dihedral angles describing the relative orientation of successive bonds along 
a chain are assumed to have a completely random distribution. 

The electronic mechanism stabilising the chain structure of Se and Te is usually 
described as a Peierls distortion, within either a tight-binding or a pseudopotential 
formalism [ll]. In the group VI elements there are four p electrons per atom and hence 
the one-dimensional p bands along the chains of asimple cubic lattice (which are assumed 
to be non-interacting) are 2/3 filled. Thus the Peierls distortion will lead to a lattice 
periodicity of 3a (where a is the lattice parameter of the simple cubic lattice) and a 
reduction of the coordination from six to two. Note that the same argument applies to 
the half-filled p bands of the group V elements where the Peierls distortion leads to a 
period-doubling and a threefold coordination. Very recently, Gaspard et a1 [12] have 
argued that lattice periodicity is not a necessary condition for the occurrence of a Peierls 
distortion, but that purely local considerations lead to the same result. Consequently, 
the conclusions can be applied to liquid and amorphous structures as well. The problem 
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is that if the Peierls argument correctly defines the conditions for a lattice instability to 
occur, it does not predict the actual magnitude of the distortion. This calculation requires 
further assumptions on the nature and strength of the repulsive interactions that held 
the atoms apart. In fact such a calculation is more easily performed in a real-space 
picture. Hafner and Heine [13] and Hafner and Kahl[14,15] have discussed the trends 
in the crystalline and in the liquid structures of the s,p-bonded elements in terms 
of effective pair interactions derived from pseudopotential perturbation theory. The 
characteristic trends in the interatomic interactions with electron density and pseu- 
dopotential can be described in terms of two fundamental parameters: the effective 
radius R, of the ionic core, and the electron-density parameter R, (R ,  is the radius of a 
sphere containing on the average one electron). The interatomic potential @(R)  is 
repulsive at short distances, with the diameter of the repulsive core being given by 
[13,161 

Drep = 2R, + 2ATF = 2R, + 2 X 0.456R,'I2 (1) 
where ATF = 0.456 RY2 is the Thomas-Fermi screening length. At intermediate and long 
distances, the potential @ ( R )  is oscillatory, the wavelength of the oscillations being set 
by the Friedel wavelength AF: 

A F  = 2?G/2k~ = 1.637 R,. (2)  
It is the interplay of the repulsive and the oscillatory parts of the pair interaction, and 
between the pair and volume contributions to the total energy [13-161 that determines 
the trend in the atomic structures. At low electron densities, the position of the nearest- 
neighbour distance in a close-packed structure agrees with the position of the first 
attractive minimum in @(R) .  This explains the stability of highly coordinated metallic 
structures in groups I to 111. As the electron density increases (R ,  decreases), the 
repulsive core moves the first attractive minimum in @(R);  see equations ( 1 )  and (2) .  If 
the close-packing distance coincides with a repulsive hump of @(R) ,  then it will even- 
tually be energetically favourable to split the first coordination shell into two subshells 
centred at 

D 1 , 2  = Dcp t A F / 2 .  (3)  
(If D1 < Drep, then the largest possible distortion will be limited by the repulsive inter- 
actions.) Detailed molecular-dynamics simulations of liquid Si, Ge [17], and As [IS] 
have shown that this mechanism of a modulation of the random close packing of the 
atoms by the Friedel oscillations in the effective interatomic interactions leads to a 
very accurate description of the liquid structures. Equation (3) may be regarded as a 
generalised real-space form of the Peierls distortion argument, although it does not refer 
to Brillouin zone and electron bands. In the conventional description of a Peierls 
distortion, the lowering of the total energy in the distorted structure results from the 
opening of an energy gap at the Fermi level. To first order, the width of the gap is given 
by 2)w(2kF)) .  Note that it is precisely the same matrix element of the pseudopotential 
that sets the amplitude of the Friedel oscillations. The real-space form considerably 
extends the concept of a Peierls distortion and shows that the complex structures of the 
liquid group IV and V elements can be explained in terms of arguments [17-191 that 
apply to the crystalline and liquid structures of all the s,p-bonded elements from groups 
I to v. 

Hence it is very tempting to extend these considerations to the group VI elements. 
In doing so we should remember that we are taking nearly-free-electron perturbation 
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theory to the very limits of its applicability. One point is that the dielectric function is 
very different in a metal and in a semiconductor. However the difference is mainly at 
long wavelength and affects the volume-dependent contributions to the total energy 
more than the effective interatomic pair potential. The structural energy differences and 
the effective pair interactions are determined mainly by the values of the pseudopotential 
at the first few reciprocal lattice vectors (or equivalently at the first peak in the static 
structure factor of the melt) and at these momentum transfers the screening functions 
of a metal and a semiconductor differ by less than ten per cent [ 11, 161. The second point 
is that a proper description of true covalent bonding effects must include at least the 
leading higher (i.e. beyondsecond-order) corrections. It is well known that without these 
corrections, NFE perturbation theory predicts only the static stability of the diamond 
structure of Si and Ge relative to say a FCC structure, but not the dynamical stability of 
the diamond lattice itself. However, the calculations of the atomic and the electronic 
structures of the molten elements [ 17-19] have shown that these covalent corrections 
are minimised in the liquid phase. For this reason the liquids are an important reference 
phase for the dielectric theory of bonding. 

Our calculation for liquid Te is based on the simplest possible approximation. We 
have used the empty-core pseudopotential [20] and the Ichimaru-Utsumi (IU) form of 
the local-field corrections to the dielectric function [21]. The IU screening function 
satisfies all the important sum rules for a response function, in particular the com- 
pressibility sum rule which is most important for obtaining the repulsive diameter of the 
ion correctly [22]. The core radius R, has to be chosen such as to be in reasonable 
agreement with the known electronic properties of Te. In their analysis of empirical 
pseudopotentials, Cohen and Heine [23] show that for Te the first node of the empirical 
pseudopotentials fitted to the electronic properties occurs at qo/2kF = 0.83. This cor- 
responds to a value of R, = 0.55 A and this has been used in our calculation which has 
been performed at a fixed number density of n = 0.0272 k3 and a temperature of T = 
723 K. The density has been taken from the data of Thurn and Ruska [24]. Note that the 
ratio R,/R, = 0.48isveryclosetothevalueinferredfromthestructuraltrends [13, 151. As 
explained in our previous paper [ 131 taking the density as given is essentially equivalent to 
modelling the non-locality of the pseudopotential by a second independent parameter. 

The effective pair potential for liquid Te is shown in figure 2. It has the expected 
form with a strong inflection in the repulsive part. At the close-packing distance of Dcp = 
3.74 A (calculated for FCC packing), both the radial and the tangential force constants 
are negative; hence a close-packed arrangement is clearly unstable. The distances D,, 
Dcp, and D2 (calculated according to equation (3)) are in reasonable agreement with 
the interatomic distances in trigonal Te: d l  the distance to two nearest neighbours inside 
a chain, d2 the distance between an atom and its four nearest neighbours in the next 
chains, and d3 the distance between neighbouring chains and between second neighbours 
in the same chain (altogether 6 + 2 = 8 neighbours), cf. figure 1. 

The structure of liquid Te has been calculated using classical microcanonical mol- 
ecular dynamics (for details of our routines see [17,18]) for ensembles with 216 to 1024 
atoms in a cubic box. The oscillatory potential was cut off at a node at a distance 
corresponding to about 35 per cent of the edge of the cubic cell (for the largest cell this 
corresponds to R,,, = 11.7 A, cf. figure 2). Although the core radius adjusted to the 
empirical pseudopotentials leads to very reasonable results for the liquid structure, the 
calculation was repeated for core radii ranging between R, = 0.52 A and R, = 0.59 A. 
It was found that the results (in particular the interatomic distances and coordination 
numbers) are stable with respect to such variations in the pseudopotential. 
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Figure 3. The molecular-dynamics results for the pair correlation function of liquid and 
amorphous T e ,  compared with the neutron diffraction data of Menelle eta1 [4,5]. 

Figures 3 and 4 show the pair correlation functiong(R) and the static structure factor 
S(q) at T = 723 K, and the corresponding neutron scattering data. Although a full 
quantitative agreement is certainly not to be expected, this very simple calculation 
reproduces the interatomic distances and coordination numbers surprisingly well: the 
first peak in g(R)  is situated at RI = 2.76 A; the integration up to the first minimum 
(Rmin = 3.2 A)yieldsacoordinationnumberofN,, = 2.56(experimentally,Rl = 2.81 A, 
N,,  = 2.63 according to Menelle et a f  [4,5]). The second peak occurs at R, = 4.15 A 



1276 J Hafner , 
2 c 

0 

I - Te 

- MO T 2 723 K I 
Neut ron  diffrac!:on 

0000 T :  7 2 3  K 

...... i ;  6 0 3 K  

2 4 

-- 

I 1 I I 1 1 
6 8 10 

(a-') 
Figure 4. The static structure factor of liquid Te.  

- I - T e  

a - Te --- 
- 
a 
x 
I r-", '\ 

I \  

I 

60 90 120 150 180 

e Idegl 
Figure 5 .  The bond-angle distribution functionf( 0 )  in liquid and amorphousTe. The vertical 
bar marks the bond-angle in the crystalline structure. 

(experimentally R2 = 4.20 A); integration of g(R) form the first to the second minimum 
yields N,, = 14.48, to be compared with the 2 + 4 + (6 + 2) = 14 neighbours at these 
distances in trigonal Te (cf. above). The fact that we get the first- and second-nearest- 
neighbour distances right suggests that our model gives a correct description of the bond- 
angles: indeed figure 5 shows that the bond-angle distribution f ( 8 )  has a single well 
defined peak at 0 = loo", i.e. very close to the bond angle of 8 = 102" in trigonal Te. 
The dihedral angles are randomly distributed (figure 6). All the characteristic details of 
the liquid structure are further enhanced if we quench the liquid to form a glassy phase 
(see figures 3 and 5 ) .  If the temperature is increased, the enhanced thermal disorder 
leads to a shallower minimum between the first and second peaks in g(R) and hence to 
an increase in the coordination number towards N ,  -- 3, which has also been found in 
the neutron scattering experiments [4,5]. 

To give a more direct impression of the structure of liquid Te, we show in figure 7 a 
projection of the atoms and nearest-neighbour bonds in an instantaneous configuration: 
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Figure 6. The distribution P(p) of the dihedral angles in liquid Te 
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Figure 7. An instantaneous configuration 
of the atoms in liquid T e  (cf. text). T =  

X 723 K,  zmin = 5.0 A, z,,, = 11.4 A. 

a slice of thickness 2R,,, (R,,, is a reasonable measure of the maximum bond length) is 
cut out of the MD cube. The atoms are projected on thexy-plane. The size of the sysmbols 
representing the atoms is scaled with the z-coordinate so that atoms close to the top of 
the layer appear larger. Nearest-neighbour bonds are drawn. If a bond connects to an 
atom outside the layer, the bond is cut at the surface. The picture shows clearly that the 
atoms in liquid tellurium form entangled broken chains. By following the time-evolution 
of such a configuration we find that these chains are continuously deformed and broken 
up, and the atoms recombine to form new chains. The lifetime of these chains can be 
estimated to be about to s .  

Note that in this simple approach the local topology is entirely dominated by the 
form of the pair potential at short and intermediate distances: the comparison of figures 
3 and 4 shows that there is a one-to-one correspondence between the peaks in g(R)  and 
the minima in @ ( R )  which extends to about 10 A. Hence the complex structure of liquid 
Te arises from the interplay of two characteristic distances: the effective size of the atom 
and the Friedel wavelength determined by the electron density. The important role of 
the electrons is also immediately evident from the static structure factor: the sharp 
second peak appears exactly at q = 2kF. It is important to realise that it is the form of 
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the potential at distances corresponding to the first two or three coordination shells that 
is important, and not the long-range tail. This follows clearly from our simulations with 
different cut-off radii: the results shown here are essentially unchanged, even if the 
potential is cut off at the second node (i.e. at R = 5.8 A). 

The exceedingly simple approach we have presented here has two main short- 
comings: (i) it ignores the very low electrical conductivity of liquid Te and hence the fact 
that the mean free path of the electrons is of the order of the interatomic distances, and 
(ii) the neglect of true covalent (i.e. angle-dependent interactions). The interplay of 
volume-forces and volume-dependent pair-forces includes covalency only in the sense 
of metallic interactions between overlapping spherical pseudoatoms, with no limit to 
the number of bonds an atom can form beyond the restrictions imposed by the packing 
requirements [16]. In the case of liquid Te we find that these constraints go a long way 
towards explaining the direction of a covalent bond: the mean interatomic distance 
imposed by the volume term and the form of the pair potential lead to the correct 
coordination number. The absence of ‘true’ covalency affects mainly the fluctuations in 
the local coordination which are certainly overestimated in our simple model. 

It is relatively easy to correct for the finite mean free path of the electrons. It is well 
known that a finite mean free path leads to a smearing of the 2kF-singularity in the free- 
electron response function and hence to a damping of the Friedel oscillations [25,26]. 
Recent calculations on strong-scattering liquid alloys [26] have shown that even with a 
mean free path of the order of a few interatomic distances, the first two oscillations in 
the potential survive in a damped form, whereas the oscillatory tail is flattened. Hence 
we can expect that a proper inclusion of finite mean-free-path effects would reduce the 
height of the second-neighbour peak in g(R) and even improve the agreement with 
experiment. 

It is more difficult to assess the importance of angular interactions. The calculation of 
realistic many-body forces via the Hellmann-Feynman theorem involves computations 
that are several orders of magnitude more time consuming than the present calculations 
[27-291. For liquid Si [27] and As [29] quantum-mechanical calculations of the liquid 
structure are now available. They tend to confirm the results obtained using perturbation 
theory [17,18]. The covalent interactions in the liquid seem to be of aresonant character: 
bond charges and angular forces appear locally whenever the configuration is close to 
the ideal geometry [30]. At high temperatures these configurations are continuously 
formed and destroyed again; hence they have only a small influence on the structure of 
the liquid. At low temperatures, these energetically favourable configurations acquire 
a particular stability, and in Si and Ge this will eventually lead to a transition from a 
metallic liquid to a semiconducting glass. For liquid Te, a quantum-mechanical cal- 
culation of the liquid structure has now been started. Very preliminary results suggest 
that our simple picture is basically correct. The main effect of the many-body forces is a 
non-random distribution of the dihedral angles. This agrees with the observation made 
by Li and Allen that in liquid As the main differences between simulations based on 
volume- and pair-forces, and simulations using the full set of quantum-mechanical many- 
body forces are in the higher-order correlation functions. Our results of l-Te will be 
reported in due course [31]. 

To conclude: we have presented the first molecular-dynamics calculation of the 
structure of molten tellurium, based on interatomic forces derived from nearly-free 
electron perturbation theory. We find that the atoms in liquid Te form a network of 
short, entangled chains. We show that this structure results from the interplay of volume- 
and pair-forces and that the structure of liquid Te may be understood in terms of 
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arguments that explain the trends in the crystalline and liquid structures of all the s,p- 
bonded elements from groups I to VI in the Periodic Table. 

Acknowledgments 

I would like to thank Professor V Heine for stimulating discussions and for a critical 
reading of the manuscript. I thank Professor P B,Allen for communicating the results of 
the density-functional molecular-dynamics simulation for I-As prior to publication. The 
hospitality of Clare College and the Cavendish Laboratory, Cambridge, where this 
paper has been written, is gratefully acknowledged. Financial support has been provided 
by the Royal Society and the Science and Engineering Research Council. 

References 

[ l ]  Enderby J E and Gay M 1980J. Non-Cryst. Solids 35 + 36 1269 
[2] Enderby J E and Barnes A C to be published 
[3] Cabane B and Friedel J 1971 J .  Physique 32 73 
[4] Menelle A ,  Bellissent R and Flank A M 1987 Europhys. Lett. 4 705 
[SI Menelle A ,  Bellissent Rand Flank A M 1989 Physica 156 + 157 174 
[6] Pearson W B 1972 The Physics and Chemistry of Metals and Alloys (New York: Wiley) p 234 
[7] Tsuchiya Y and Seymour E F W 1985 J. Phys. C: Solid State Phys. 18 4721 
[8] Cutler M and Rasolondramanitra H 1984 J. Non-Cryst. Solids 61 + 62 1097 
(91 Bellissent R and Tourand G 1977 Proc. 7th Int. Conf. Liquid and Amorphous Semiconductors (Edin- 

burgh) ed W Spear, p 98 
[lo] Bellissent Rand Tourand G 1980 J. Non-Cryst. Solids 35 + 36 1221 
[ l l ]  Littlewood P B 1983 Crit. Reu. Solid State Mater. Sci. 11 229 
[ 121 Gaspard J P, Marinelli F and Pellegatti A 1987 Europhys. Left. 3 1095 
[13] Hafner J and Heine V 1985 J .  Phys. F: Met. Phys. 13 2479 
[ 141 Hafner J and Kahl G 1984 J. Phys. F: Met. Phys. 14 2259 
[15] Hafner J 1987 From Hamiltonians to Phase Diagrams (Berlin: Springer) 
[I61 Heine V and Weaire D 1970 Solid State Physics vol24 (New York: Academic) p 247 
[17] Arnold A,  Mauser N and Hafner J 1989J. Phys.: Condens. Matter 1 965 
[18] Hafner J 1989 Phys. Reu. Lett. 62 784 
[19] Jank Wand Hafner J 1988 Europhys. Lett. 7 623 
[20] Ashcroft N W 1966 Phys. Lett. 23 48 
[21] Ichimaru S and Utsumi K 1981 Phys. Reu. B 24 7385 
[22] Hafner J and Heine V 1986 J. Phys. F: Met. Phys. 16 1429 
[23] Cohen M L and Heine V 1970 Solid State Physics vol24 (New York: Academic) p 235 
[24] Thurn H and Ruska J 1971 J. Non-Cryst. Solids 22 331 
[25] de Gennes P G 1982 J. Physique 23 630 
[26] Hafner J 1989J. Phys.: Condens. Matter 1 1133 
[27] Car R and Parrinello M 1988 Phys. Reu. Lett. 60 204 
(281 Payne M C, Joannopoulos J D, Allan D C, Teter M P and Vanderbilt D H 1986 Phys. Reu. Lett. 56 2656 
[29] Li X P and Allen P W Phys. Reo. Lett. to be published 
[30] Stich I, Car R and Parrinello M 1989 Phys. Reu. Lett. 63 2240 
(311 Hafner J and Payne M C to be published 


